Search results for "Quantum Systems"

showing 10 items of 85 documents

Non-Markovian Dynamics of a Qubit Due to Single-Photon Scattering in a Waveguide

2018

We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to discuss the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit …

---PhotonWave packetGeneral Physics and AstronomyFOS: Physical sciencesWaveguide QED; open quantum systems; non-Markovianity; quantum optics01 natural sciences010305 fluids & plasmasQuantum mechanics0103 physical sciencesMaster equationMesoscale and Nanoscale Physics (cond-mat.mes-hall)Waveguide (acoustics)quantum optics010306 general physicsQuantumPhysicsQuantum opticsopen quantum systemQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringnon-MarkovianityQubitWaveguide QEDQuantum Physics (quant-ph)Physics - OpticsOptics (physics.optics)
researchProduct

Algebras of unbounded operators and physical applications: a survey

2009

After a historical introduction on the standard algebraic approach to quantum mechanics of large systems we review the basic mathematical aspects of the algebras of unbounded operators. After that we discuss in some details their relevance in physical applications.

AlgebraAlgebras of unbounded operatorComputer scienceComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONAlgebraic dynamicFOS: Physical sciencesStatistical and Nonlinear PhysicsRelevance (information retrieval)Mathematical Physics (math-ph)Algebraic numberQuantum systems with infinite degrees of freedomSettore MAT/07 - Fisica MatematicaMathematical Physics
researchProduct

Quantifying, characterizing, and controlling information flow in ultracold atomic gases

2011

We study quantum information flow in a model comprising of an impurity qubit immersed in a Bose-Einstein condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We place a particular emphasis on non-Markovian dynamics, characterized by a reversed flow of information from the background gas to the qubit and identify a controllable crossover between Markovian and non-Markovian dynamics in the parameter space of the model.

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsFlux qubitFOS: Physical sciencesQuantum simulator-One-way quantum computerAtomic and Molecular Physics and OpticsPhase qubitOpen quantum systemQuantum Gases (cond-mat.quant-gas)QubitBECs entanglement quantum information theory open quantum systemsStatistical physicsQuantum informationAtomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Trapped ion quantum computerPhysical Review A
researchProduct

Theory for the stationary polariton response in the presence of vibrations

2019

We construct a model describing the response of a hybrid system where the electromagnetic field - in particular, surface plasmon polaritons - couples strongly with electronic excitations of atoms or molecules. Our approach is based on the input-output theory of quantum optics, and in particular it takes into account the thermal and quantum vibrations of the molecules. The latter is described within the $P(E)$ theory analogous to that used in the theory of dynamical Coulomb blockade. As a result, we are able to include the effect of the molecular Stokes shift on the strongly coupled response of the system. Our model then accounts for the asymmetric emission from upper and lower polariton mod…

DYNAMICSQuantum decoherenceFOS: Physical sciences02 engineering and technology01 natural sciencesplasmonicsvärähtelytQuantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Polaritonhybrid quantum systemskvanttikemiaMOLECULE010306 general physicskvanttifysiikkaQuantumQuantum opticsPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSurface plasmonCoulomb blockade021001 nanoscience & nanotechnologySurface plasmon polaritonSURFACE-PLASMON POLARITONSpintailmiötLight emission0210 nano-technologyQuantum Physics (quant-ph)ENERGY-TRANSFERpolaritonsemissio (fysiikka)
researchProduct

Entanglement dynamics of two independent cavity-embedded quantum dots

2010

We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emitter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally …

DephasingFOS: Physical sciencesQuantum entanglementOpen system (systems theory)Settore FIS/03 - Fisica Della MateriaOpen quantum systemsAtomic and Molecular PhysicsQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spontaneous emissionMathematical PhysicsPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsTime evolutionCondensed Matter PhysicsAtomic and Molecular Physics and Optics; Mathematical Physics; Condensed Matter PhysicsAtomic and Molecular Physics and OpticsMultipartite68.65.Hb Quantum dots (patterned in quantum wells)Quantum dotQubitPhysics::Accelerator Physicsand OpticsQuantum Physics (quant-ph)68.65.Hb Quantum dots (patterned in quantum wells); Open quantum systems
researchProduct

DISSIPATIVE DYNAMICS OF MULTI-STATE QUANTUM SYSTEMS IN THE WEAK TO STRONG COUPLING REGIME

In this thesis the dissipative dynamics of bistable quantum systems is studied within the path integral approach. The path integral representation of the propagator for quantum states and density matrices of discrete variable systems is described along with the Feynman-Vernon influence functional. The main approximations to the FV influence for the spin-boson model are introduced and applied to a bistable system beyond the two-level system approximation, the so-called double-doublet system. By the combined use of the Bloch-Redfield perturbative approach and of the path integral techniques, a phase diagram showing the various dynamical and dissipative regimes of the double-doublet system is …

Dissipative quantum systems
researchProduct

Dynamical decoupling efficiency versus quantum non-Markovianity

2015

We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrised by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the dynamical decoupling scheme, leading to a worse coherence preservation. We show that each dynamical decoupling pulse reverses the flow of quantum information and, on this basis, we investig…

Dynamical decouplingDephasingnon-Markovianity dynamical decoupling reservoir engineering Ohmic spectra pure dephasing open quantum systemsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesSettore FIS/03 - Fisica Della Materiareservoir engineering010305 fluids & plasmasOhmic spectra0103 physical sciencesStatistical physicsQuantum information010306 general physicsQuantumPhysicsQuantum PhysicsSpectral densitypure dephasingopen quantum systemsnon-Markovianitydynamical decouplingFlow (mathematics)QubitQuantum Physics (quant-ph)Coherence (physics)
researchProduct

Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling

2014

In this paper we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, as $1/f$ noise, by Dynamical Decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$-noise. We investigate the efficiency of an "entanglement m…

Dynamical decouplingDephasingsuperconducting qubitFOS: Physical sciencesQuantum entanglementEntanglement; superconducting qubits; open quantum systems; quantum controlSquashed entanglementSUPERCONDUCTING CIRCUITSNoise (electronics)Settore FIS/03 - Fisica Della MateriaEntanglementQuantum nonlocalityQuantum mechanicsQuantumPhysicsQuantum Physicsopen quantum systemBELL INEQUALITYQuantum PhysicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQUANTUM-SYSTEMSQubitQuantum Physics (quant-ph)quantum controlSUPERCONDUCTING CIRCUITS; BELL INEQUALITY; QUANTUM-SYSTEMS
researchProduct

On the validity of non-Markovian master equation approaches for the entanglement dynamics of two-qubit systems

2010

In the framework of the dissipative dynamics of coupled qubits interacting with independent reservoirs, a comparison between non-Markovian master equation techniques and an exact solution is presented here. We study various regimes in order to find the limits of validity of the Nakajima–Zwanzig and the time-convolutionless master equations in the description of the entanglement dynamics. A comparison between the performances of the concurrence and the negativity as entanglement measures for the system under study is also presented.

Entanglement Open quantum systems Non-Markovian master equationsDynamics (mechanics)Markov processConcurrenceQuantum PhysicsQuantum entanglementCondensed Matter PhysicsAtomic and Molecular Physics and Opticssymbols.namesakeExact solutions in general relativityClassical mechanicsQubitMaster equationsymbolsStatistical physicsDissipative dynamicsMathematical PhysicsMathematicsPhysica Scripta
researchProduct

Evanescent wave approximation for non-Hermitian Hamiltonians

2020

The counterpart of the rotating wave approximation for non-Hermitian Hamiltonians is considered, which allows for the derivation of a suitable effective Hamiltonian for systems with some states undergoing decay. In the limit of very high decay rates, on the basis of this effective description we can predict the occurrence of a quantum Zeno dynamics, which is interpreted as the removal of some coupling terms and the vanishing of an operatorial pseudo-Lamb shift.

Evanescent waverotating wave approximationeffective HamiltonianGeneral Physics and AstronomyFOS: Physical scienceslcsh:Astrophysics01 natural sciencesArticle010305 fluids & plasmassymbols.namesake0103 physical scienceslcsh:QB460-466non-Hermitian HamiltonianLimit (mathematics)quantum Zeno effect010306 general physicslcsh:ScienceMathematical physicsQuantum Zeno effectCouplingPhysicsQuantum PhysicsBasis (linear algebra)open quantum systemsEffective hamiltonian Non-hermitian hamiltonian Open quantum systems Quantum zeno effect Rotating wave approximationHermitian matrixlcsh:QC1-999symbolsRotating wave approximationlcsh:QHamiltonian (quantum mechanics)Quantum Physics (quant-ph)lcsh:Physics
researchProduct